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Abstract--The conditions for the propagation of one-dimensional thermoconvective waves are shown to 
contradict the stability criterion for a vertically unbounded fluid. This leads to the problem of two- 
dimensional wave propagation in a stratified fluid layer confined between horizontal walls. The 
eigenvalue-problem is solved by a two-parameter expansion that is singular with respect to one of the 
parameters. The results show that the horizonta1 wails do not prevent the existence of weakly damped 
thermoconvective waves provided that the Rayleigh-number is large. Finaily the interaction of 
thermoconvective waves and sound waves is investigated, and the amplitudes of the various wave modes 

are determined 

NOMENCLATURE 

height of the layer; 
isentropic speed of sound; 
specific heat capacities at constant pressure 
and constant volume, respectively ; 
specific internal energy; 
gravitationa acceleration, g = (0, -9); 
isothermal compressibility; 
complex wave number, k = k, + ik,; 
buoyancy frequency ; 
Prandtl-number; 
pressure; 
specific entropy; 
temperature; 
time; 
amplitude of u-perturbations ; 
velocity component in x-direction ; 
amplitude of u-perturbations; 
velocity component in y-direction; 
horizontal coordinate; 
vertical coordinate. 

Greek symbols 

P> thermal expansivity; 

Yo* parameter, cf. equations (13) and (18); 
&E,FJ, perturbation parameters, cf. equations (40). 

(25), and (69), respectively; 
0, amplitude of the dimensionless 

temperature perturbation; 

Y: 
thermal diffusivity; 
thermal conductivity; 

in, viscosity ; 

ltbt bulk viscosity; 
v, kinematic viscosity; 

JJ, density ; 
a, dissipation; 
(,% angular frequency. 

*Present Address: Escher Wyss AG, CH-8023, Zurich, 
Switzerland. 

Subscripts, superscripts 

0, at dimensionless quantities: first order 
expansion; at non-dimensionless 
quantities: undisturbed state; 
at dimensionless quantities: differentiation 
with respect to the argument: at non- 
dimensionless quantities: perturbation 
quantity; 

xly,t, 
dimensionless quantity; 
partial derivatives with respect to x,y,t, 
respectively. 

1. INTRODUCTION 

THER~~ON~CTIVE waves are coupled thermal and 
shearing waves in a stratified fluid in the gravity 
field. These waves are of particular interest because 
they can be weakly damped despite the fact that the 
transport of wave energy is accomplished by means 
of viscosity and thermal conductivity of the fluid. 
The propagation process is stimulated by buoyancy 
forces due to the anisothermal stratification of the 
undisturbed basic state. 

Thermoconvective waves were studied for the first 
time by Luikov and Berkovsky in [l], where the 
following problem was considered (Fig. 1): A vis- 
cous, heat conducting fluid occupies the semi-space 
x > 0. A negative temperature gradient parallel to 

direction of 
wave propagation 

FIG. 1. Model for the propagation of one-dimensional 
the~~onv~tive waves, T,(J): temperature distribution in 
the undistur~d state, g: vector of gravitational 

acceleration. 
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the vector of gravitational acceleration g, i.e. 
dT,/d_r < 0, is given. At the wall (x = 0) periodic 
oscillations with small anlplitudes are prescribed, 
either in the form of periodic changes of the wall 
temperature or as an oscillatory motion of the wall. 
The perturbations propagate horizontally in the 
form of plane harmonic waves. 

If the frequency of the oscillations does not exceed 
a certain upper limit one obtains two coupled waves 
(the so-called thermoconvective waves) whose pro- 
perties differ remarkably from those of ordinary 

thermal waves and ordinary shearing waves. Table 1 
shows a comparison of the complex wave numbers in 

terms of a small parameter E that will be defined in 
Section 3. In the case of ordinary thermal and 
shearing waves, generated by temperature per- 
turbations or transverse velocity perturbations in an 

unstratified fluid, the real and the imaginary parts of 
the complex wave number are equal to each other, cf. 

The coupling of these waves will be studied in 
Section 5 in a straightforward manner. But there is 
also another, more subtle compressibility effect, and 
this effect makes the existence of weakly damped 
thermoconvective waves appear questionable. Taking 
into account the compressibility with respect to 

the undisturbed, stratified state, we shall find out 
that the conditions for stability of the basic state and 
for the existence of thermo~onvective waves cannot 
be simultaneously satisfied in a vertically unbounded 

fluid. Hence the fluid has to be confined between 
horizontal walls, and the question arises, how the 
properties of the waves are changed due to the 
horizontal walls and whether weakly damped waves 
are possible at all under these conditions. By means 
of perturbation methods it will be shown in Section 4 
that the influence of the horizontal walls on the 
damping of thermoconvective waves is, rather sur- 

prisingly, extremely weak. 

Table 1. Comparison of complex wave numbers 

Ordinary thermal wave and shearing wave: 

k= $1+i) 
J- 

Thermoconvective waves: 

k, = 1 +iO(c) 

F,, = i + O(E) 
with E << I 

e.g. [2]. Hence these waves are strongly damped over 

distances of the order of the wavelength. In contrast 
to this well known behaviour of the classical waves, 
the damping constant of one of the two thermocon- 
vective waves is very small compared to the real 
wave number. It follows that the amplitude of this 
wave changes but very little over a wavelength. 

Furthermore, according to a result obtained in 
[l], the phase angle between the thermal and 
transverse oscillations which is to be prescribed at 
the wall x = 0 can be chosen such that the energy 
introduced at the boundary is solely transported in 
the weakly damped thermoconvective wave. This 

aspect seems to be of importance for practical 
applications. 

The first investigations on thermoconvective waves 
have already been extended in several aspects. 
~agnetohydrodynamical effects and ferromagnetic 
properties of the fluid have been considered [3], and 
the propagation of thermoconvective waves in visco- 
elastic media has been studied [4]. 

The compressibility of the fluid, however, has been 
neglected so far in the publications on thermocon- 
vective waves. Of course, the compressibility of the 
fluid gives rise to a sound wave that propagates 
simultaneously with the thermoconvective waves. 

First attempts to describe the propagation of 
thermoconvective waves in a bounded layer have 

already been made by Berkovsky and Sinitsyn [5,6]. 
In [5] the case of free boundaries with slip- 
conditions on both sides of the layer was considered. 
A numerical treatment of the propagation of tem- 
perature perturbations between rigid walls at sub- 
critical and supercritical Rayleigh-numbers has been 
described in [6], This probIem has also been 
investigated experimentally [7]. Recently, these in- 
vestigations have been extended by Berkovsky et al.? 
also to wave-like disturbances of developed periodic 
convection. In our analysis, however, thermoconvec- 
tive waves are understood as small amplitude waves 
propagating in a stratified fluid being at rest in the 

e.g. [S],: -- 

undisturbed state. 

2. GOVERNING EQUATIONS 

The conservation equations for mass, momentum 
and energy are used in the following form (see 

(2) 

pE-e%=div(AgradT’)+@; 
Dt p Dt 

(3) 

p is the density, u and o are the velocity components 
in x- and _r-direction, respectively, p is the pressure. e 
the specific internal energy, T the temperature, @ the 

iPrivate communication; see [I61 
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dissipation, d the heat conductivity, p the viscosity, 
and ,C a second coefficient of viscosity, related to the 
bulk viscosity ,u,, according to ,C = pb-&. Viscosity 
and thermal conductivity are assumed’to be con- 
stant. The influence of variable transport coefficients 
has been investigated in [12]. 

The substantial time derivative is denoted by 
D/Dr, with 

Without restrictions concerning the compressibility 
of the fluid, the system (l)-(3) is supplemented by the 
following relations between differential changes of 
state variables, where /3 is the thermal expansivity, I( 
the isothermal compressibility, and c, the specific 
heat capacity at constant volume [ 151: 

dp = -ppdT+pKdp, (4) 

(-3 

At the vertical wall periodic p~rtur~tions of the 
form 

.Y =0: $ = $&)+Y em”‘“‘, Y = const., (6) 

are prescribed, where $ stands for any one of the 
dependent variables, and tl/,,(y) describes the distri- 
bution of the variable I/J in the undisturbed basic 
state. 

Small perturbations $‘(x, y, t) are introduced by 
the relation 

r/j = $0(r) f- $‘f-% I’. tk (7) 

and after neglecting all quadratic terms the following 
set of linear equations is obtained from equations 

(l)-(3): 

1 1 dpo -p;+--u’+u:+t‘;=o, 
PO PO dq’ 

@I 

‘- 4 - -~u:tvA~‘+(.+~)(u:-i-Fj),, (9) 

The subscripts x, y, t indicate partial derivatives. 
Note that the Boussinesq-approximation is not 
applied at the present stage since the term pi is 
retained in the continuity equation (8). In deriving 
equation (11) the internal energy was eliminated by 
means of (5). Another formuIation of the energy 
equation, equivalent to (1 l), is the following: 

Pocpo T’-ep;+yoc!’ =MT’. 
i 

(12) 
po%J 1 

where the coefficient y. is the sum of the actual 

temperature gradient dTo/dy and the so-called 
“adiabatic temperature gradient” [ 10,i I]: 

_3!+!!&T,, 
” - dy c,,<> 

(13) 

Equation (12) can be obtained From equation (11) by 
using (4) the thermodynamic relationship Cl.53 

and the hydrostatic equation 

dpo 
-= --PO?& 

4i 
Using the thermodynamic equations [ 151 

(14) 

(15) 

c’s (--> P 
ZP T= 7 (17) 

we can relate the coefficient ye to the entropy 
gradient. The result is 

08) 

This relation, which will play an important role 
with regard to the stability of the basic state, is not 
obtained, if in the basic state, density changes with 
pressure are neglected [3] or the density gradient is 
put equal to zero [l]. 

As far as the disturbances (and not the basic 
states) are concerned the compressibility of the fluid 
can be neglected provided that we disregard sound 
waves and their (weak) interactions with the thermo- 
convective waves. Hence we shah use the approxi- 
mation 

P’ = --P&T’, (19) 

in most parts of this paper, but we shall consider the 
coupling of thermoconvective waves and sound 
waves later in Section 5, thereby also providing a 
more rigorous justification of the approximation 
‘adopted here. 

The perturbation equations (8)--(12) are linear but 
have, strictly speaking, variable coefficients pa(y), 
Totj-), . . . . Nevertheless we can approximate the 
coefficients by constant reference values provided 
that the vertical extension of the fluid layer to be 
considered is restricted such that the quantities po, 
To,. . . change but little across the layer. Note that 
this does not imply that the gradients dp,/dy, 

d&ldy,..., can be neglected. 

3. ONEDIM~NSIONAL WAVE SOLUTIONS 
AND THE INSTABILITY OF THE 

UNDISTURBED STATE 

If we assume that the fluid is unbounded in y- 
direction (see Fig. 1) and that the amplitude Y in the 
boundary condition (6) as well as the coefficients in 
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the perturbation equations are constant, the sol- 
utions will be of the form 

ti = $0(Y) + ti’(X> t). (20) 

As a consequence all partial derivatives with respect 
to y can be cancelled in the equations (8)-(12). 
Introducing the approximation (19) together with 
equation (20) into the equations (10) and (12) we 
obtain 

&2: (I) k, =;(l-@G+$J); 

(II) k, = i+;(\fi+$J). (31) 

e; - p&, = g&l T’, (21) 

7;‘-h-T:, = -you’. (W 

K = i/p,c,,, is the thermal diffusivity. In this case the 
momentum equation in y-direction, (21) and the 
energy equation, (22) are sufficient to describe 
thermoconvective waves. We want to find solutions 
of the system (21) (22) in the form of plane harmonic 
waves 

(23) 

Introducing (23) into the system (Zl), {22) yields the 
dispersion relation 

( - iW + Vk*)( - iW + Kk’) +g/!$,yo = 0. (24) 

This is formally identical to the dispersion relation 
given by Luikov and Berkovsky [l] but with a 
different meaning of the parameter y,,, 

It is clear from equation (24) that a real wave 
number, i.e. vanishing damping, is obtained if (and 
only ifl the wave frequency w vanishes and the term 

g,80~0, i.e. &yO, is negative. Since g/&y0 is of the 
dimension of the square of a frequency, use of the 
following dimensionless variables is suggested : 

w 
E= (25) 

\/ -SBoYo 

E = kL, with L = ( -rcv/g&~0)“4. (26) 

This transforms the dispersion relation (24) into 

(-ic+~Fr@) -ia+-!--I? -1 =O, (27) 
fi > 

where Pr = V/K is the Prandtl-number. Aiming at 
solutions for weakly damped waves, we expand for 
small values of E according to 

k= &)+&El +&2&+. . . , withi:<<<. (28) 

Introducing this expansion into the dispersion 
relation (27) leads to the following results: 

60: (I) IT, = 1, 

(II) k0 = i, 
(29) 

cl: (If k, =Lp+&). 

(II) E, =@r+&)_ 

(30) 

The results describe a pair of thermoconvective 
waves, with the wave denoted by (I) being weakly 
damped, and the wave denoted by (II) being strongly 
damped. The damping coefficient is proportional to 

(45 + l/J%). This becomes a minimum at Pr = 1, 
which is therefore the point of optimal conditions for 
weakly damped thermoconvective waves. Taking 
into account the first and the second term of the 
expansion, we obtain for Pr = 1 

(32) 

This result is in remarkable contrast to the be- 
haviour of classical thermal or shearing waves as was 
already discussed in Table 1. 

The physical meaning of the perturbation para- 
meter E is seen more clearly when the expression 
gp,,y,,, by using equations (4) (16))(18), is rewritten 
as 

where c0 is the isentropic speed of sound in the 
undisturbed, basic state. If poll0 is positive the square 
root of the third expression in equation (33) is real 
and is known as the buoyancy frequency or 
Brunt-VlisClH frequency N [lo, 111. It is an impor- 
tant parameter in the theory of (stably) stratified 
fluids. With the present applications in mind it is 
very useful to extend the definition of the buoyancy 
frequency also to the case of negative values of &yO, 
therefore writing 

NZ = sPoyo, ifA,y, > 0, 
N2 = -gBoyo, if&,y, < 0. 

(34) 

Comparing equation (34) with equation (25) we see 
that the parameter E is the ratio between the wave 
frequency w and the buoyancy frequency N: 

E = w/N, with &,yO < 0. (35) 

The same frequency ratio, but for &y,, > 0, also 
appears as a characteristic parameter in the theory of 
internal gravity waves [lo]. 

We indicated above that pOyO < 0 is a necessary 
condition for the existence of thermoconvective 
waves. With very few exceptions, the thermal 
expansivity PO of fluids is positive. For such 
“normal” fluids the necessary condition reduces to 

Yo < 0 (36) 
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or, in view of equation (1 S), 

dso - < 0. 
dy 

(37) 

Since a vertically unbounded fluid is not mechan. 
ically stable at a negative entropy gradient (cf. e.g. 
[2], p. 10) the important conclusion is that in 
vertically unbounded normal fluids the necessary 
condition for thermoconv~tive waves contradicts 
the stability condition of the basic state. Although 
the condition (36) is already included in previous 
works [l, 31, the contradiction with the stability 
condition has been overlooked so far due to 
oversimplifications, mainly with regard to the com- 
pressibility of the fluid in the basic state. 

In order to prevent instability of the basic state we 
can confine the fluid between two horizontal walls. 
This leads to the problem of two-dimensional wave 
propagation treated in the following section. 

‘t 
‘b/2 ’ “,. // ’ , 

/ /i;/////i/&/yJ$)yg///// 

;,,’ 
,I’ 

T’=O 

u’=O X 
v’= 0 

\ 

FIG. 2. Model for the wave propagation 
between horizontal walls. 

in a fluid layer 

0 0.5 1 0 

FIG. 3. Distribution of the temperature perturbation in 
vertical direction as obtained by the method of matched 
asymptotic expansions: @zj two-term primary solution; @~lt 
one-term secondary solution; ei2.l) uniformly valid solution 

f&l = 1700, CP2 = 0.155). 

4. THERMOCONVECTIVE WAVES IN A 
HORIZONTALLY BOUNDED FLUID LAYER 

We now consider the propagation of thermo- 
convective waves in a fluid confined between non- 
moving horizontal walls of constant temperature, as 
shown in Fig. 2. At subcritical Rayleigh-numbers tne 
horlzontai walls prevent the instability of the basic 
state, i.e. the onset of free convection. It is expected, 
however, that the horizontal walls give rise to an 
additional damping of the the~oconvective waves. 
The main question is now whether weakly damped 
thermoconvective waves are possible at al1 in a fluid 
layer bounded by horizontal walls. 

4.1. A two-parameter expansion of the eigenualue 

problem 
The compressibility of the fluid is again neglected 

as far as perturbations are concerned, and it is 
recalled that the propagation of coupled thermo- 
convective waves and sound waves will be studied in 
Section 5. 

The system of perturbation equations (8)-( 11) 
together with the approximation (19) is now reduced 
to a single partial differential equation for the 
temperature perturbation. Using dimensionless 
variables 

2=x/L, j=y/b, t=wt, 

T = T/T,(O), 
(38) 

with the wave length of the weakly damped 
thermoconvective wave in the limit E 40 as the 
characteristic length in x-direction, cf. equation (26), 
we obtain 

where 

6 = (L/b)’ = (- ~v/g~~~~b4)“z. i 

NZ is given by equation (34), whereas B2 is defined 

by 

(41) 

The differential equation (39) is supplemented by the 
following boundary conditions at the horizontal 
walls : 

j= &l/2: 7’=0; 
a=O, or T+=O; (42) 
u=O, or O,TC=O, 

It should be mentioned here that the partial differential 
equation (39), being of sixth order with respect to .t 
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and J, may yield not only two solutions for 
thermoconvective waves but also one solution for 
internal gravity waves. Contrary to thermoconvective 
waves, however, internal gravity waves can only exist 
at conditions of stable stratification, i.e. ;‘. > 0 or 
dse/dy > 0. The interesting possibility of a joint 
approach to thermoconvective waves and internal 
gravity waves has been discussed in more detail in 

[12] ; the approach, however, is only suitable if either 
a two-dimensional formulation is adopted or com- 
pressibility effects are included, cf. also Section 5. 

We now seek solutions for progressive waves of 

the form 

T = ,(,),iV’. (43) 

Here the dimensionless complex wave number k is 
defined in the same way as for plane waves, cf. 
equation (26). By introducing equation (43) into the 
partial differential equation (39) we obtain the 
following ordinary differential equation for the 
amplitude f3 (’ denotes the differentiation with respect 

to g): 

where 

(45) 

The boundary conditions (42) yield 

8 = 0, H” = 0, D, 8’ = 0, at j = If: l/2. (46) 

Obviously we have to deal now with an eigenvalue 
problem with the solutions for the wave number I? 

representing the eigenvalues. 
The eigenvalue problem can be substantially sim- 

plified by considering the order of magnitude of the 
parameter 6, which characterizes the ratio between 
the height of the layer and the wave length of the 
weakly damped thermoconvective waves, By com- 
paring the de~nition of 6. equation (40) and the 
de~nition of the RayIeigh-num~r 

Ra = gBoli’olb4 
KV ’ 

we obtain (with ;rO < 0) 

6 = l/J%. (48) 

In a layer bounded by walls where no-slip conditions 
are prescribea, the critical Rayleigh-number is given 

by 

I&, = 1708, (49) 

see e.g. [9, p. 431. As we are interested in weakly 
damped thermoconvective waves, we will choose the 

value of the Rayleigh-number as close to Ru,,~’ as 
possible in order to achieve large values of ;jO and, 
according to equation (2.5) small values of c. This 
has two consequences: 

Firstly it follows from equation (13) that 

lyOl >> g/&,T’,/c,,, which leads to 

d7;, yO*---. ifRa>>l 
dj 

(50) 

Hence the difference between y. and dT,,idy, 
although essential when we considered the stability of 
the unbounded fluid, can now be neglected, thereby 

bringing equation (47) n posteriori in full accord with 
the usual definition of the Rayleigh-number. 

Secondly, with ci = O(l/,~Ra,,,,) cc 1, we conclude 
that 6, in addition to c, can be regarded as a second 
perturbation parameter. In the limit S --t 0, equation 
(44) yields the dispersion relation (27) of the one- 
dimensional model. Collecting terms of order (5, 
however, results in a differential equation of the 

second order, whereas the full equation (44) is of 
sixth order. Therefore only two of the six boundary 
conditions (46) can be satisfied, and the regular 

expansion in terms of 6, with 6 -+ 0, fails. 

4.2. Solution by the method of’ rnatchrd asynptotic 

expansions 

Avoiding possible misunderstanding of terms like 
“inner” and “outer”, and following [ 131, we call the 
expansion, whose first-order term is determined 
without recourse to matching with another expan- 
sion, the “primary” expansion. In the present 

problem the primary expansion is obtained as 6 + 0 
with J fixed, therefore describing the behaviour of 
the wave in the bulk of the layer. In the boundary 
layers near the horizontal walls a secondary expan- 
sion, with a stretched vertical coordinate kept fixed, 
is appropriate. 

Whereas the expansion in terms of (i is singular. 
the expansion in terms of E can be expected to be 
regular as in the one-dimensional case. Thus the 
primary two-parameter expansion reads as follows: 

s=H,,(~)+sB,o(l)+6”2N,‘(?;)~0,r:2,C~5’:2,cS), 

k=iT,,+~k,~+cT~~,+S~~~k~~+o(~~,~~~,~j~~, (51) 

(c. 6 -+ 0 ; i; fixed). 

Note that fractional powers of b appear in order to 
aliow the matching with the secondary solution. 

As was already mentioned, the limit 5 --t 0 yields 
the dispersion relation of the one-dimensional 
(plane) waves. Thus 

k_,, = I;,, E’, = k,, (52) 

where k, and k, are given by equations (29) and (30). 
Similarly, 0’, is a “one-dimensional” correction to 
f?,,, and can be disregarded in the present analysis. 
Next, terms of order s’c5’ and JZ*~~‘~, respectively, are 
considered in equation (44). This yields 

A2b 
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and 

154) 

Turning now to the secondary expansion, we 
introduce stretched coordinates near the upper and 
the lower wall, respectively: 

Y = (y+f)/JZ, near J = -4; 

Y = (+-j)/J$, near I = +f. 
(55) 

With the secondary expansion 

@= 6”290~(Y)+F~,0(Y)+..., 

(E, 6 -+ 0; YfiXed), (56) 

we obtain from equations (44) and (46) the sixth- 
order differential equation 

with the boundary conditions 

9,, = 0, S& = 0, 9;;; -L& = 0, at Y = 0. (58) 

By a straightforward calculation, we now de- 
termine solutions of the secondary differential equa- 
tion (57) which, on one hand, satisfy the boundary 
conditions (58) and, on the other hand, match 
asymptotically with the solution of the primary 
di~erential equation (53). 

By use of Van Dyke’s asymptotic matching 
principle (see e.g. [ 131, p. 206) the first-order result 
is 

H,, = Ce”cos(2M+ l)nj?, (59) 

9,, = t, Y+C,+C,e~“‘Y+C,e-“‘Y, (60) 

k,, = -Q” + (2M + 1)2nZ]. (61) 

where C is as a free constant, and 

M=0,1,2 /..., (62a) 

I= f12b/6g, (62b) 

C, = C(2Mf l)ne*v2, at y = _+f, (62d) 

(&x: - 1 )C, 

c2 = al(l-dl:)[l-~cll(l--cr:)/cc,(l-a:)] 

= -o.s373c,, (624 

c3.4 = 
c2 

@:,&,i - l 
= (0.2686 +0.4653i)CI. (62f) 

Note that due to the exponential term in equation 
(59) the wave amplitude is not symmetrical with 
respect to the centerline of the layer (jj = 0). 

In order to keep the results for the second-order 
solution free of unessential details we now restrict 
the further analysis to the lowest mode (iw = 0) of 
B,, according to equation (59). This is justified if, for 
instance, the perturbations that are prescribed at the 
vertical wall x = 0 vary with jj in the same way as 

does the lowest mode of Boo. More complicated 

boundary conditions at the vertical wall would 
require a superposition of higher-order modes. 

Solving the second-order equation (54) with M = 0 

in Boo, and applying again the asymptotic matching 
condition to determine constants of integration, we 

finally obtain 

t&r = e@[B cos 7rj+2xC(Cz/Cl)ji sin ~$1, 

k,, = 3n2C,/‘C, = - 1.6119~~. 
(63) 

Similar to C, also the constant B remains unde- 
termined within the eigenvalue problem. Both con- 
stants are available for satisfying boundary con- 
ditions at the vertical wall (X = 0). 

Summarizing the results for the complex wave 

number, we obtain for the lowest mode of the weakly 
damped thermoconvective wave the expression 

R= koo+sk,,+6k,,+L53’217,,+... (64) 

with &, = 1, 

k, 0 = ii(JE + 1/4X), 

k,, = -$(fi2b/‘6gf2+z2], 

‘co, = - 15.909. 

(65) 

It is seen from these results that at large Rayleigh- 

numbers the effect of horizontal walls on the wave 
number is of order 6 = Ra- ‘I2 only. This effect is due 
to the development of an amplitude profile between 
the walls. On the other hand, due to the no-slip 
condition at the walls a boundary layer forms, giving 
rise to a correction term of order a312 in the wave 

number. It must be emphasized that both correction 
terms are real and negative, which means that the 
real part of the wave number is reduced, and the 
wave length as well as the phase velocity is increased. 

Within this order of magnitude, i.e. terms 0(b312) 
included, the damping coefficient is unaffected by the 
presence of the horizontal walls. An additional 
damping due to the friction at the walls can only 
appear in terms of higher order compared to d312. 

Thus it has been shown that in a horizontal fluid 

layer, bounded by rigid walls, weakly damped 

thermoconvective waves are possible if the value of 
the Rayleigh-number is close to the (large) value of 
the critical Rayleigh-number. Furthermore, the re- 
sults of the one-dimensional model can be taken as a 
first approximation in the two-dimensional case as 
far as the wave number is concerned. This is of 
course not true for the amplitude which strongly 
depends on the lateral coordinate in the two- 
dimensional case. 

It seems appropriate at this stage to note that the 

Boussinesq-approximation, although often used in 
natural convection problems, has not been applied in 
our analysis so far. Applying the Boussinesq- 
approximation would result in neglecting the first 
and the second term in the continuity equation (8). 
The first term leads to the term with the coefficient 
&~~‘b/g in equation (39), and it eventually becomes 
a negligible higher-order term in our expansion. The 
second term appears in equation (39) as the term 
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with the coefficient Blij’b/g; this term is responsible second-order primary and the first-order secondary 
for the asymmetry of the amplitude, cf. equations soIution for the upper half of the layer. As the 

(59) and (62b), and it also gives rise to a modifi- Rayleigh-n~ber is limited by the critical value, the 
cation of the wave number, cf. equation (65). value of ljr” cannot be chosen smaller than 0.155. 

Although these effects are qualitatively interesting, Hence the depth of the boundary layer as well as the 
they are not very important from a quantitative discrepancy between the uniformly valid solution 
point of view since and the secondary solution are relatively large. The 

two-term primary solution shows very clearly the 
fl=b/g << 1, (66) displacement effect of the boundary layer. 

Table 2. 

Rayleigh-number Ra = 1700 

Pe~ur~tion parameter 6 = 0.024 

Boundary-layer thickness 
related to the depth of 4; = 0.155 
the layer 

Medium : Air at 300K 

Height of the layer b Cm] l.f7 x lo-* 8.45 x iom2 

Buoyancy frequency N [s ‘1 5.22 0.1 

Period 2” at E = 0.1 rs1 1-2 628 
w 

Parameter y0 [Km-‘] 8.3 x 10’ 0.3 1 

[Km-‘] 0.98 x 1o-2 0.98 x 1o-2 

Temperature difference 
T,(-l/2)-T,~+1/2) WI 9.7 0.026 

@*b 
111 - 3.25 x 10-Z -0.79 x w4 

II 

under many conditions of practical interest. Two 
examples are given in Table 2. The values in the first 

example are based on data of experiments [7]. The 
second example is intended to show that a rather 
modest increase in the layer height has quite a large 
effect on the important parameters, especially the 
temperature difference between the walls and the 
wave period. 

In order to find a uniformly valid solution for the 
amplitude, we add the primary and the secondary 
solutions and subtract their common part (additive 
composition, cf. e.g. [13, p. 2081). Adopting the 
Boussinesq-approximation, we obtain from equa- 

tions (59), (60), and (63) 

B$?‘) = (1 + $)cos 7cF +&2x(C2/C,)ysin rcj 

+,ii;S[C,e~~‘Y+C4e-“Y]. (67) 

The superscript (2,l) indicates that the solution is 
accurate to second order in the primary layer (bulk 
layer), and to first order in the secondary layers 
(boundary layers). 

In Fig. 3 this solution is shown together with the 

5. THE I~ERAC~ON BETWEEN 
T~ERMOCONVE~IVE WAVES AND 

SOUND WAVES 

In general, the thermal and transverse oscillations 
of thermoconvective waves are coupled with per- 
turbations of the density, the pressure and the 
longitudinal component (x-components) of the vel- 
ocity, cf. equations (8)-(11). Thus, with the compress- 
ibility of the fluid fully taken into account, a sound 
wave will propagate simultaneously with the thermo- 
convective waves. According to the results of the 
previous section it is justified to study the influence 
of the sound wave again by means of a one- 
dimensional model, although we have to be aware of 
the modifications due to the horizontal boundaries 
of the layer. 

We introduce now the one-dimensional for- 
mulation (20) into the system of equations (8)-(ll), 
supplemented by the general relations (4) and (5) 
without any restrictions concerning the compress- 
ibility of the fluid. Assuming plane harmonic waves 
as indicated by equation (23), one can derive the 
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following dispersion relation : 

-1;2{1-i~~A3B+~Z(1-i~~)A4} 

+E2P#?+E2) = 0. (68) 

The dimensionless wave number E and the parameter 
E have already been defined by equations (26) and 
(25) respectively. The new parameter rl is given by 

r/ = N 6/c;, (69) 

with c,, as the isentropic speed of sound in the 
undisturbed state, and N as the buoyancy frequency, 

cf. equation (34). Furthermore the following abbrevi- 
ations are introduced : 

Ao = c&v,&, 
A, = AoPr3/v, 

A2 = AoPr(l +3/v), 

A3 = A,,+@r(l+3/v), (70) 

A4 = A,,+@r;/v, 

B= -fi2/N2, 

3 = (2p + F)lPo = (G + pdlpo. 

The physical meaning of the parameter 9 becomes 
immediately clear if we regard the phase velocities of 
the two thermoconvective waves (I) and (II) at small 
values of the parameter E, cf. equations (26) (28) and 

(29): 

w (-> k I 

- ~[Nfi]"', 

(71) 

- [N&J]“‘. 

Hence the parameter q is the square of the ratio 
between the phase velocity of the strongly damped 
thermoconvective wave (wave II) and the isentropic 
speed of sound. Although the larger of the two phase 
velocities (w/k,), and (w/k,),, is related to co, g can be 
treated as a small perturbation parameter. There is 
an upper bound for N since the critical Rayleigh- 
number must not be exceeded (see Section 4), and at 
the typical value N = 1 s-r we obtain for air at 
300K 

‘I = 1.7 x lo-‘0. 

Asymptotic solutions for the wave numbers of the 
thermoconvective waves can be found by introduc- 
ing the two-parameter expansion 

k = Eeo+& +&J+o(e2, Er/, II’), (72) 

into equation (68). The solutions for k,, and k,, are 
identical to the values of k. and r?, in equations (29) 
and (30) that are the results obtained with the 
compressibility neglected in the disturbances. For the 

first-order correction due to compressibility we 

obtain 

(I) E,, = A,BJ4JPr, 

(II) cl0 = - iA1B/4JPr. 
(73) 

If the propagation of thermoconvective waves is 
considered the basic state is typically such that the 
constants A, and B, cf. equation (70) are positive. 
Hence the real wave number of the weakly damped 
thermoconvective wave (wave I) is increased and the 
damping of the strongly damped thermoconvective 
wave (wave II) is decreased. This leads to a reduced 
attenuation per wave length in both cases. 

Since the dimensionless wave number k was 
defined by using the wave length of thermo- 
convective waves as a reference length, the expansion 
(72) cannot yield solutions for the sound wave. If we 
want to keep the definition of E unchanged, we can 
obtain the solution for the sound wave by changing 
the expansion to 

k = e+2[~oo+~~01 $-r/k,, 

+&So2 +&qktl +q21;20 + . ..I. (74) 

The classical relation for the isentropic sound wave, 
k = w/c,, would correspond to k = ~rlr’~. Introduc- 
ing equation (74) into the dispersion relation (68) 

gives 

koo=,,/B, k,, =kto=O, 

ho2 = (1 -B)/2fi, li,, = i(A,/2)B3’2. 
(75) 

Surprisingly already the lowest order of the expan- 

sion of the wave number deviates from the classical 
result. Though B is approximately equal to one at 
conditions that are typical of thermoconvective 
waves, it could adopt any other value in a general 
case; even B = 0 or B < 0 would be possible. An 
explanation for this phenomenon is found by 
realizing that in a stratified fluid sound waves may 
be coupled with internal gravity waves. This problem 

has been treated in [14] for the case of horizontally 
propagating plane waves, and the above results have 
been verified. Further details can also be found in 

[12]. We just note here that by extending the one- 
dimensional treatment from the incompressible to 
the compressible case, we are retaining possible 
solutions for internal gravity waves. 

Now turning our attention to the wave ampli- 
tudes, we sum up the contributions of the three 
simultaneously propagating waves, 

111 

T’ = 1 Qjei(k,x-wf), 
i=l 

-111 
u’= C yeiW,x-Wf), (76) 

j=I 

111 

u'= 1 Ujei(kr'-m), 

j=l 

to satisfy the boundary conditions at the vertical 
wall 

111 111 111 . 
C Oj = eO, C vj = V0, C Uj = Uo. (77) 
j=l j=l j=l 
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Subscripts j = I and j = II refer to the two thermo- 
convective waves, j = III to the sound wave. Bound- 
ary values at the wall are denoted by the subscript 
0. 

As our aim is to compare the magnitudes of the 
amplitudes, we shall leave possible phase angles 
between H,, V, and CJO out of consideration. By 
eliminating the amplitudes V;: and Uj with the use of 
the governing one-dimensional equations, we obtain 
from the equations (77) a system of three linear 
algebraic equations for the three unknown ampli- 
tudes Oj. To compute the coefficients of these 
equations we use the asymptotic solutions for the 
wave numbers according to equations (72) and (74). 
Furthermore we define the following dimensionless 
amplitudes : 

By considering only the leading terms of the 
expansions and solving the system of linear algebraic 
equations, we finally obtain the temperature amph- 

tudes & in terms of the boundary values &, Vo, Uo: 

112 

w 

However, one has to pay attention to the fact that 
the attenuation of the sound wave is much smaller 
than the attenuation of even the weakly damped 
thermoconvective wave. While the damping of the 
thermoconvective wave I is of the order O(E), the 
damping of the sound wave is only of the order 
O(~~r7~~“), cf. equations (74) and (75). 

6. SUMMARY 

Thermoconvective waves are strongly coupled 
thermal and shearing waves in a stratified Auid, with 
the coupling being due to buoyancy forces. In 
contrast to ordinary thermal waves and ordinary 
shearing waves, thermoconv~tive waves can be 

weakly damped. 
Avoiding any assumption about the compress- 

ibility of the fluid in the undisturbed basic state it 
has been shown in Section 3 that the conditions for 
the propagation of one-dimensional thermo- 
convective waves contradict the stability criterion for 
a vertically unbounded fluid. This contradiction was 
overlooked by previous authors [ 1,3] due to various 
assumptions and approximations concerning the 
basic state of the fluid. 

(79) 

Using again the governing equations that were used to eliminate the velocity components, one can derive 

from equation (79) the following solutions for the amplitudes 5 and iij: 
,_j r . r . 

_ ; A, ,$$q”z - f A, v/&‘:2 

-)A,, fi+’ &A, &‘:2 

q A, &ql” 1 

For details of the calculations the reader is referred to [12]. 

& 

70 
- 
UC 

As far as orders of magnitude are concerned, the 
results obtained for the amplitudes can be sum- 
marized as follows. If the waves are induced by a 
horizontal motion of the (vertical) wall, the dimen- 
sionless temperature amplitudes of the sound wave 
and of the thermoconvective waves are all of the 
same order as the dimensionless amplitude of the 
wall motion (i.e. UO). In this case the contributions 
of the sound wave are essential and cannot be 
neglected. If, on the other hand, the waves are due to 
temperature oscillations at the wall and/or a vertical 
motion of the wall, the temperature and velocity 
amplitudes of the sound wave are smah of the order 
O(q’!‘) and O(E~“~), respectively, in comparison to 
the wall values, and can therefore be neglected under 
most circumstances. 

In order to prevent instability of the basic state the 
fluid can be confined between two horizontal walls. 
This leads to the problem of two-dimensional wave 
propagation treated in Section 4. 

To find asymptotic solutions of the eigenvalue 
problem a two-parameter expansion is carried 
through. The first perturbation parameter, denoted 
by C, is the ratio of the wave frequency u and the 
buoyancy frequency N; only if E is very small are 
weakly damped thermoconvective waves possible at 
all. The second perturbation parameter, S, is the 
square of the ratio of wave length and height of the 
layer. The parameter S is related to the Rayleigh- 
number by 6 = Rae”‘; it can be regarded as small 
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compared to 1 at values of Ra close to the critical 

Rayleigh-number of N 1700. 
Whereas the expansion in terms of E is regular, the 

expansion in terms of 6 leads to a singular 
perturbation problem that has been solved by the 
method of matched asymptotic expansions. The first 
correction to the results of the one-dimensional 
model consists of an increase of the wavelength of 
the order O(6) and is due to the formation of an 
amplitude profile between the horizontal walls. The 
influence of the boundary layer solution on the wave 
number is of the order O(63’2). It is very interesting 

that this modification, too, does not yield an 
additional damping of the waves but further in- 
creases the wave length. This can be interpreted as a 
displacement effect of the boundary layer. As the 
damping due to the friction at the horizontal walls is 
shown to be small of higher order, it follows that the 
horizontal walls do not prevent the existence of 
weakly damped thermoconvective waves provided 
that the Rayleigh-number is large. 

Taking into account the compressibility of the 
fluid not only as far as the basic state is concerned 
but also with respect to the disturbances, the 
interaction between thermoconvective waves and 
sound waves has been investigated in Section 5. 
Regarding the thermoconvectlve waves it has been 
shown that the compressibility effects slightly reduce 
the attenuation per wave length; the reduction is of 
the order of the very small parameter q, where q is 
the square of the ratio of a thermoconvective phase 
velocity and the speed of sound. On the other hand, 
the simultaneously propagating sound wave is 
considerably modified. This modification is con- 
nected with the propagation of internal gravity 

waves in stratified fluids. 
Finally, the two thermoconvective wave modes 

and the sound wave have been superposed to satisfy 
the boundary conditions at the vertical wall, and the 
amplitudes of the three partial waves have been 
determined. The results indicate that the contri- 
bution of the sound wave can be neglected if we are 
primarily interested in the propagation of thermal 
and transversal (shearing) oscillations, but that it 
must be taken into account when at the vertical wall 
also longitudinal oscillations are prescribed. 
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ONDES THERMOCONVECTIVES DANS UN FLUIDE COMPRESSIBLE 

Rbumb-Les conditions de la propagation des ondes thermoconvectives monodimensionnelles sent en 
contradiction avec le critere de stabiliti pour un fluide verticalement illimiti. Ceci conduit au problime de 
la propagation d’une onde bidimensionnelle dans une couche de fluide stratifite, confinee entre les parois 
horizontales. Le probltme de valeurs propres est r&.olu par un dtveloppement g deux parametres qui est 
singulier par rapport d l’un des paramttres. Les r&hats montrent que les parois horizontales ne 
suppriment pas l’existence d’ondes thermoconvectives faiblement amorties lorsque le nombre de Rayleigh 
est grand. Finalement, l’intkraction des ondes thermoconvectives et des ondes sonores est tttudite et les 

amplitudes des diffkrents modes sent dtterminbes. 
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THER~~KONVEKTIVE WELLEN IN EINEM KOMPRESS~BLEN FLUID 

Zusammenfassung-Es wird gezeigt. da8 die Bedingungen fiir die Ausbreitung von eindimensionalen 
thermokonvektiven Wellen dem StabilitLtskriterium fiir ein vertikal unbegrenztes Fluid widersprechen. 
Das fiihrt zum Problem der zweidimensionalen Wellenausbreitung in einem geschichteten Fluid, das 
zwischen horizontalen W&den eingeschlossen ist. Das Eigenwert-Problem wird mittels einer Zwei- 
Parameter-Entwicklung gel&t, die beziiglich eines der heiden Parameter singukr ist. Die Ergebnisse 
zeigen, da8 die horizontalen WLnde die Existenz schwach gedgmpfter thermokonvektiver Wellen nicht 
verhindern, vorausgesetzt dal3 die Rayleigh-Zahl sehr grol3 ist. SchlieBlich wird die Wechselwirkung 
zwischen thermokonvektiven Wellen und Schallwellen untersucht, und die Amplituden der einzelnen 

Wellen werden bestimmt. 

TEPMOKOHBEKT~BHblE BOJHbI B C~~MAEMO~ ~~~KO~~~ 

Aiumraunn - nOKa’SaH0, YTO yCJIOBti% paCnpOCTpaHeHHS OLIHOMepHbIX TepMOKOHBeKTHBHbiX BOJTH 

npOTHBOpeYaT KpWTepHK) yCTOi?WBOCTH BcpTHKa.‘lbHO HeOrpaHWeHHOfi WHRROCTII. 3TO np&iBOLWiT 

K npO6ReMc RByXMepHOrO paCnpOCTpaHcHHR BOJW B CTpaTM~HIIMpOEaHHOM CflOc ~WlKOCTI4, 3aKnK)- 

9efwoh4 Mexcny rop5430HTanbiiblMM CTenKaMki. 3ana9a Ha co6cTseweble 3Haveukin peluaeTca c nobiombto 

neyxnapaMeTpwecKor0 pa3no~eskin. RB~llltOmcrOCIl CllHryJUIpHblM n0 OTHOmcHHH) K OLIHOMy W3 

napaMeTpoa. Pe3ynbTaTbl noKa3bmamT. ST0 npH HaRW’(HI( rOpM30HTaJIbHblX CTeHOK TaKme HMelOT 

MeCTO cna6o 3aTyXaH,“,HC TepMOKOHBeKTCIBHblc BOJHbl, HO TonbKo a cnyvae 6onburoro 3naqeHMII 
qNC,,a Penen. HawoHeu. pacCMaTpHBacTCK B3a,fMOL,eiiCTBHe TepMOKOHBeKTNBHbIX A 3ByKOBblX BOJIH 

I, OrIpeReflflkOTCfI aM”JIMTy,Ib, pa3JWNHblX BOJlHOBblX MOD. 


