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Abstract—The conditions for the propagation of one-dimensional thermoconvective waves are shown to
contradict the stability criterion for a vertically unbounded fluid. This leads to the problem of two-
dimensional wave propagation in a stratified fluid layer confined between horizontal walls. The
eigenvalue-problem is solved by a two-parameter expansion that is singular with respect to one of the
parameters. The results show that the horizontal walls do not prevent the existence of weakly damped
thermoconvective waves provided that the Rayleigh-number is large. Finally the interaction of
thermoconvective waves and sound waves is investigated, and the amplitudes of the various wave modes
are determined.

NOMENCLATURE
b, height of the layer;
¢, isentropic speed of sound ;
¢p,C,, specific heat capacities at constant pressure

and constant volume, respectively;

e, specific internal energy ;

g, gravitational acceleration, g = (0, —g);
K, isothermal compressibility ;

k, complex wave number, k = k,+ik;;

N, buoyancy frequency;
Pr, Prandtl-number;

D, pressure;

s, specific entropy;

T, temperature;

t, time;

U, amplitude of u-perturbations ;

u, velocity component in x-direction;
v, amplitude of v-perturbations;

o, velocity component in y-direction;
X, horizontal coordinate;

¥, vertical coordinate.

Greek symbols

B, thermal expansivity ;
Yo» parameter, cf. equations (13) and (18);

d,e,n, perturbation parameters, cf. equations (40),
{25}, and (69), respectively;

6, amplitude of the dimensionless
temperature perturbation;

K, thermal diffusivity;

A, thermal conductivity;

i, viscosity ;

s bulk viscosity;

v, kinematic viscosity;

i density ;

D, dissipation;

o, angular frequency.

*Present Address: Escher Wyss AG, CH-8023, Zurich,

Switzerland.

Subscripts, superscripts
0, at dimensionless quantities: first order
expansion ; at non-dimensionless
quantities: undisturbed state;

, at dimensionless quantities: differentiation
with respect to the argument ; at non-
dimensionless quantities: perturbation
quantity;

s dimensionless quantity;

x,¥,t, partial derivatives with respect to x,y,t,

respectively.

1. INTRODUCTION

THERMOCONVECTIVE waves are coupled thermal and
shearing waves in a stratified fluid in the gravity
field. These waves are of particular interest because
they can be weakly damped despite the fact that the
transport of wave energy is accomplished by means
of viscosity and thermal conductivity of the fluid.
The propagation process is stimulated by buoyancy
forces due to the anisothermal stratification of the
undisturbed basic state.

Thermoconvective waves were studied for the first
time by Luikov and Berkovsky in [1], where the
following problem was considered (Fig.1): A vis-
cous, heat conducting fluid occupies the semi-space
x> 0. A negative temperature gradient parallel to

I

L, direction of )
wave propagation

oscillating
wave generator

FiG. 1. Model for the propagation of one-dimensional

thermoconvective waves, Ty{y): temperature distribution in

the wundisturbed state, g: vector of gravitational
acceleration.
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the vector of gravitational acceleration g, ie.
dTo/dy < 0, is given. At the wall (x = 0) periodic
oscillations with small amplitudes are prescribed,
either in the form of periodic changes of the wall
temperature or as an oscillatory motion of the wall.
The perturbations propagate horizontally in the
form of plane harmonic waves.

If the frequency of the oscillations does not exceed
a certain upper limit one obtains two coupled waves
(the so-called thermoconvective waves) whose pro-
pertics differ remarkably from those of ordinary
thermal waves and ordinary shearing waves, Table |
shows a comparison of the complex wave numbers in
terms of a small parameter ¢ that will be defined in
Section 3. In the case of ordinary thermal and
shearing waves, generated by temperature per-
turbations or transverse velocity perturbations in an
unstratified fluid, the real and the imaginary parts of
the complex wave number are equal to each other, cf.

Table 1. Comparison of complex wave numbers

Ordinary thermal wave and shearing wave:

w .
k = IZE(1+1)

Thermoconvective waves:

k= 1+i0()
ky = i+0()
withe « |

e.g. [2]. Hence these waves are strongly damped over
distances of the order of the wavelength. In contrast
to this well known behaviour of the classical waves,
the damping constant of one of the two thermocon-
vective waves is very small compared to the real
wave number. It follows that the amplitude of this
wave changes but very little over a wavelength.

Furthermore, according to a result obtained in
[1], the phase angle between the thermal and
transverse oscillations which is to be prescribed at
the wall x = 0 can be chosen such that the energy
introduced at the boundary is solely transported in
the weakly damped thermoconvective wave. This
aspect seems to be of importance for practical
applications.

The first investigations on thermoconvective waves
have already been extended in several aspects.
Magnetohydrodynamical effects and ferromagnetic
properties of the fluid have been considered [3], and
the propagation of thermoconvective waves in visco-
elastic media has been studied [4].

The compressibility of the fluid, however, has been
neglected so far in the publications on thermocon-
vective waves. Of course, the compressibility of the
fluid gives rise to a sound wave that propagates
simultaneously with the thermoconvective waves.
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The coupling of these waves will be studied in
Section S in a straightforward manner. But there is
also another, more subtle compressibility effect, and
this effect makes the existence of weakly damped
thermoconvective waves appear questionable. Taking
into account the compressibility with respect to
the undisturbed, stratified state, we shall find out
that the conditions for stability of the basic state and
for the existence of thermoconvective waves cannot
be simultaneously satisfied in a vertically unbounded
fluid. Hence the fluid has to be confined between
horizontal walls, and the question arises, how the
properties of the waves are changed due to the
horizontal walls and whether weakly damped waves
are possible at all under these conditions. By means
of perturbation methods it will be shown in Section 4
that the influence of the horizontal walls on the
damping of thermoconvective waves is, rather sur-
prisingly, extremely weak.

First attempts to describe the propagation of
thermoconvective waves in a bounded layer have
already been made by Berkovsky and Sinitsyn [5,6].
In [5] the case of free boundaries with slip-
conditions on both sides of the layer was considered.
A numerical treatment of the propagation of tem-
perature perturbations between rigid walls at sub-
critical and supercritical Rayleigh-numbers has been
described in [6]. This problem has also been
investigated experimentally [7]. Recently, these in-
vestigations have been extended by Berkovsky et al.t
also to wave-like disturbances of developed periodic
convection. In our analysis, however, thermoconvec-
tive waves are understood as small amplitude waves
propagating in a stratified fluid being at rest in the
undisturbed state.

2, GOVERNING EQUATIONS

The conservation equations for mass, momentum
and energy are used in the following form (see

e.g [8]):

Dp Su v
St pl =+ — =0, 1
Dr p(@x ay> @

Du dp @ u _fou &b
P’ﬁ;:‘&*'a;[z"a”(é;*g;)]

d ou Ov

+a—y[“(’6§+5§ﬂ’ @

Dv_ o .0 %ﬁ?]
Por= oy P9 Mlax T ay

/,__.H_7=div(/1gradT)+‘1>; 3)

p is the density, u and v are the velocity components
in x- and y-direction, respectively, p is the pressure, ¢
the specific internal energy, T the temperature, ® the

1 Private communication ; see [ 16].
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dissipation, 4 the heat conductivity, u the viscosity,
and i a second coefficient of viscosity, related to the
bulk viscosity w, according to fi = pu,—%u. Viscosity
and thermal conductivity are assumed to be con-
stant. The influence of variable transport coefficients
has been investigated in [12].

The substantial time derivative is denoted by
D/Dt, with

D/Dt = 8/6t +u d/dx+v 8/0y.

Without restrictions concerning the compressibility
of the fluid, the system (1)-(3) is supplemented by the
following relations between differential changes of
state variables, where § is the thermal expansivity, K
the isothermal compressibility, and c, the specific
heat capacity at constant volume [15]:

dp = —pBdT+pKdp, “)
BT\ p )

de=c.d -5} 5 dp. 5
€= c, T+( K pzﬂ {5

At the vertical wall periodic perturbations of the
form

x=0: ¢y =y, +W¥e ' ¥=const, (6)

are prescribed, where ¥ stands for any one of the
dependent variables, and ,(y) describes the distri-
bution of the variable ¥ in the undisturbed basic
state.

Small perturbations y'(x,y,t) are introduced by
the relation

lﬁ = '//0(.)") + lV(X, W 1)3 (7)

and after neglecting all quadratic terms the following
set of linear equations is obtained from equations

(1-03):

1 1d
g — P2y ), =0, )
Po po dy

1
U, = —-p— P VAL + (v ) 4+, (9)
o ‘
, o } s oy 9
By = — — py+ VAL + (v + N+ v}y —— ', {10)
Po Po

. BTy
Polopel 4y — K()ch

4T, foTo_dpo

dy  Kopie,, dy
The subscripts x,y,t indicate partial derivatives.
Note that the Boussinesg-approximation is not
applied at the present stage since the term p| is
retained in the continuity equation (8). In deriving
equation (11) the internal energy was eliminated by
means of {5). Another formulation of the energy
equation, equivalent to (11), is the following:

T
pocm[T’ - ﬁe 2pi+ )'ov'] = JAT'.

where the coefficient p, is the sum of the actual

)w] =JAT. (11

12

0tpy
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temperature gradient dT,/dy and the so-called
“adiabatic temperature gradient” [ 10, 11]:
. dT, gBeTy
o= gt
y ¢
Equation {12) can be obtained from equation {11} by
using {4}, the thermodynamic relationship [15]

(13)

Po

2
T
CP()‘cfm = ‘80 ‘£ * ‘ (14)
Kopo
and the hydrostatic equation
dp
L= —hod (15)
3%
Using the thermodynamic equations [ 15]
(ﬁ) =2, (16)
or/, T
(E‘E) -k (17
op/r p

we can relate the coefficient y, to the entropy
gradient. The result is

(18)

This relation, which will play an important role
with regard to the stability of the basic state, is not
obtained, if in the basic state, density changes with
pressure are neglected [3] or the density gradient is
put equal to zero [1].

As far as the disturbances (and not the basic
states) are concerned the compressibility of the fluid
can be neglected provided that we disregard sound
waves and their (weak) interactions with the thermo-
convective waves. Hence we shall use the approxi-
mation

pr=—poboT, (19)
in most parts of this paper, but we shall consider the
coupling of thermoconvective waves and sound
waves later in Section 5, thereby also providing a
more rigorous justification of the approximation

‘adopted here.

The perturbation equations (8)-(12) are linear but
have, strictly speaking, variable coefficients pgy(y),
To(y).... Nevertheless we can approximate the
coefficients by constant reference values provided
that the vertical extension of the fluid layer to be
considered is restricted such that the quantities p,,
To. ... change but little across the layer. Note that
this does not imply that the gradients dp,/dy,
dTy/dy,..., can be neglected.

3. ONE-DIMENSIONAL WAVE SOLUTIONS
AND THE INSTABILITY OF THE
UNDISTURBED STATE
If we assume that the fluid is unbounded in y-
direction (see Fig. 1) and that the amplitude ¥ in the
boundary condition (6) as well as the coefficients in
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the perturbation equations are constant, the sol-
utions will be of the form

¥ =yoy)+¥'(x, 0).

As a consequence all partial derivatives with respect
to y can be cancelled in the equations (8)-(12).
Introducing the approximation (19) together with
equation (20) into the equations {10} and (I12) we
obtain

(20)

n
(22)

v— v =g T,
T;_KY::/.\' = _VOD'"
K = A/poc,, is the thermal diffusivity. In this case the
momentum equation in y-direction, (21), and the
energy equation, (22), are sufficient to describe

thermoconvective waves. We want to find solutions
of the system (21), (22) in the form of plane harmonic

waves
T’ — 0 ei(kx - 1:31).
v vV

Introducing (23) into the system (21), {22) yields the
dispersion relation

(23)

(— i+ vk —iw+xk?) +gBeye = 0. (24)

This is formally identical to the dispersion relation
given by Luikov and Berkovsky [1] but with a
different meaning of the parameter y,,.

It is clear from equation (24) that a real wave
number, ie. vanishing damping, is obtained if (and
only if) the wave frequency w vanishes and the term
gBavo, 1.6 Boye. is negative. Since gfiyy, is of the
dimension of the square of a frequency, use of the
following dimensionless variables is suggested:

w
e = —, (25)

v —9Bov0
k =kL, withL = (—Kv/gﬁoyo)”‘*. (26)

This transforms the dispersion relation (24) into

(mis+\/FI;'EZ)(—is+\/lﬁE2>—l =0, (27)

where Pr= v/k is the Prandti-number. Aiming at
solutions for weakly damped waves, we expand for
small values of ¢ according to

K=Fky+ek, +e2ky+..., withe< 1. (28)
Introducing this expansion into the dispersion

relation (27) leads to the following results:

—

& ) k=1, (29)
an  k, =i,
1
Cl: (I) = z(xz /—>3
Pr
) (30)
an k= —( /Pr+——|,
4 VP
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The results describe a pair of thermoconvective
waves, with the wave denoted by (I) being weakly
damped, and the wave denoted by (II) being strongly
damped. The damping coefficient is proportional to
(\/f:‘;-% I/ﬁ). This becomes a minimum at Pr = 1,
which is therefore the point of optimal conditions for
weakly damped thermoconvective waves. Taking
into account the first and the second term of the
expansion, we obtain for Pr = 1

R
(I) k=\/§;l:3;72:+l\/8/2+\l,

(In) k:\/ {fzﬂ /L ]

V2

(32)

This result is in remarkable contrast to the be-
haviour of classical thermal or shearing waves as was
already discussed in Table 1.

The physical meaning of the perturbation para-
meter ¢ is seen more clearly when the expression
gBoye, by using equations (4), (16)—(18), is rewritten

as

=gﬂoTo ((ls__g>___ “(gdpo +g_z_)’ (33)

Coy dy po dy €5

where ¢, is the isentropic speed of sound in the
undisturbed, basic state. If 8,7, is positive the square
root of the third expression in equation (33) is real
and is known as the buoyancy frequency or
Brunt-Viisald frequency N [10, 11]. It is an impor-
tant parameter in the theory of (stably) stratified
fluids. With the present applications in mind it is
very useful to extend the definition of the buoyancy
frequency also to the case of negative values of f,7,,
therefore writing

N? = gBo7os
N? = ~gBov0,

gBoYo

if Boyo > O,
if Boye < 0.
Comparing equation (34) with equation (25) we see

that the parameter ¢ is the ratio between the wave
frequency w and the buoyancy frequency N:

(34)

&= /N, with By, <0. (35)
The same frequency ratio, but for Sy, > 0, also
appears as a characteristic parameter in the theory of
internal gravity waves [10].

We indicated above that B,y, < 0 is a necessary
condition for the existence of thermoconvective
waves. With very few exceptions, the thermal
expansivity B, of fluids is positive. For such
“normal” fluids the necessary condition reduces to

yo <0 (36)
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or, in view of equation (18),
ds,
dy

Since a vertically unbounded fluid is not mechan.
ically stable at a negative entropy gradient (cf. eg.
[2], p. 10) the important conclusion is that in
vertically unbounded normal fluids the necessary
condition for thermoconvective waves contradicts
‘the stability condition of the basic state. Although
the condition (36) is already included in previous
works [1,3], the contradiction with the stability
condition has been overlooked so far due to
oversimplifications, mainly with regard to the com-
pressibility of the fluid in the basic state.

In order to prevent instability of the basic state we
can confine the fluid between two horizontal walls.
This leads to the problem of two-dimensional wave
propagation treated in the following section.

<. 37
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F1G. 2. Model for the wave propagation in a fluid layer
between horizontal walls.
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FiG. 3. Distribution of the temperature perturbation in

vertical direction as obtained by the method of matched

asymptotic expansions: 8’ two-term primary solution; §{"

one-term secondary solution; 821! uniformly valid solution
(Ra = 1700, 6'/2 = 0.155).
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4, THERMOCONVECTIVE WAVES IN A
HORIZONTALLY BOUNDED FLUID LAYER

We now consider the propagation of thermo-
convective waves in a fluid confined between non-
moving horizontal walls of constant temperature, as
shown in Fig. 2. At subcritical Rayleigh-numbers the
horizontal walls prevent the instability of the basic
state, ie. the onset of free convection. It is expected,
however, that the horizontal walls give rise to an
additional damping of the thermoconvective waves.
The main question is now whether weakly damped
thermoconvective waves are possible at all in a fluid
layer bounded by horizontal walls.

4.1. A two-parameter expansion of the eigenvalue
problem

The compressibility of the fluid is again neglected
as far as perturbations are concerned, and it is
recalled that the propagation of coupled thermo-
convective waves and sound waves will be studied in
Section 5.

The system of perturbation equations (8)-(11)
together with the approximation (19) is now reduced
to a single partial differential equation for the
temperature perturbation. Using dimensionless
variables

32_=x/L, V= y/b, f=wt,} (38)

T =T/T,(0),

with the wave length of the weakly damped
thermoconvective wave in the limit ¢ >0 as the
characteristic length in x-direction, cf. equation (26),
we obtain

[ N _
D\.{DK]:AT—é N T;J
g

where
_ d o d 1 -
D.=¢—=—+/PrA, D, =¢-—=— A,
"TE ' ‘G iy
82 a2
=+ 40
A ax? oy’ (40)

&= (L/by = (—Kv/gﬁo”fob"'yﬂ-

N? is given by equation (34), whereas N? is defined
by

~ d

N? = 9 ﬂ. (41)

Po dy

The differential equation (39) is supplemented by the
following boundary conditions at the horizontal
walls:

y==+1/2: T=0;
v=0, or Ty =0;

u=10, or D, T;=0.

(42)

It should be mentioned here that the partial differential
equation (39), being of sixth order with respect to %
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and y, may yield not only two solutions for
thermoconvective waves but also one solution for
internal gravity waves. Contrary to thermoconvective
waves, however, internal gravity waves can only exist
at conditions of stable stratification, ie. 9 >0 or
dso/dy > 0. The interesting possibility of a joint
approach to thermoconvective waves and internal
gravity waves has been discussed in more detail in
{12]; the approach, however, is only suitable if either
a two-dimensional formulation is adopted or com-
pressibility effects are included, cf. also Section 5.

We now seek solutions for progressive waves of
the form

(43)

Here the dimensionless complex wave number k is
defined in the same way as for plane waves, cf
equation (26). By introducing equation (43) into the
partial differential equation (39) we obtain the
following ordinary differential equation for the
amplitude ¢ (' denotes the differentiation with respect
to ¥):

_ N%b
D, {D{(é@”—kzé}—é ; af]

2 .

Nb
i 2 9}+k20 =0, (44)
g

T = 6(5) ™",

where

(45)

The boundary conditions (42} yield
=0, 6 =0 D& =0 aty=+1/2. (46}

Obviously we have to deal now with an eigenvalue
problem with the solutions for the wave number k
representing the eigenvalues.

The eigenvalue problem can be substantially sim-
plified by considering the order of magnitude of the
parameter 8§, which characterizes the ratio between
the height of the layer and the wave length of the
weakly damped thermoconvective waves. By com-
paring the definition of 4, equation (40), and the
definition of the Rayleigh-number

- B
Ra— gBolyolb . 47
KV
we obtain (with y, < 0)
é=1//Ra. (48)

In a layer bounded by walls where no-slip conditions
are prescribeqa, the critical Rayleigh-number is given

by
Ra,,;, = 1708, (49)

see eg. [9, p. 43]. As we are interested in weakly
damped thermoconvective waves, we will choose the
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value of the Rayleigh-number as close to Ra,,; as
possible in order to achieve large values of 7, and,
according to equation (25), small values of ¢ This
has two consequences:

Firstly it follows from equation (13) that
ivol » gBo To/c,,, Which leads to
T
vo & —2, if Ra» L. (50)
dy

Hence the difference between vy, and dTy/dy,
although essential when we considered the stability of
the unbounded fluid, can now be neglected, thereby
bringing equation (47) a posteriori in full accord with
the usual definition of the Rayleigh-number.

Secondly, with § = 0(1/\/Racm) « 1, we conclude
that J, in addition to ¢, can be regarded as a second
perturbation parameter. In the limit 6 — 0, equation
{44) yields the dispersion relation (27) of the one-
dimensional model. Collecting terms of order 4,
however, results in a differential equation of the
second order, whereas the full equation (44) is of
sixth order. Therefore only two of the six boundary
conditions {46) can be satisfied, and the regular
expansion in terms of J, with é — 0, fails.

4.2. Solution by the method of matched asymptotic
expansions

Avoiding possible misunderstanding of terms like
“inner” and “outer”, and following [13], we call the
expansion, whose first-order term is determined
without recourse to matching with another expan-
sion, the “primary” expansion. In the present
problem the primary expansion is obtained as 6 =0
with 7 fixed, therefore describing the behaviour of
the wave in the bulk of the layer. In the boundary
layers near the horizontal walls a secondary expan-
sion, with a stretched vertical coordinate kept fixed,
is appropriate.

Whereas the expansion in terms of J is singular,
the expansion in terms of ¢ can be expected to be
regular as in the one-dimensional case. Thus the
primary two-parameter expansion reads as follows:

0= 00(7) + 60, o(F) + ' 2001 (7) + 0162, £6' 2, 3),
K= Fyp+ekyq+ 0Ky + 032Ky, + O(e%, 63, 0%),
(e, & — 0; ¥ fixed).

151)

Note that fractional powers of é appear in order to
allow the matching with the secondary solution.

As was already mentioned, the limit & — 0 yields
the dispersion relation of the one-dimensional
(plane) waves. Thus

Eoo‘—‘Ew E10:E1~ (52)

where k, and k, are given by equations (29) and (30).
Similarly, 0,, is a “one-dimensional” correction to
oo, and can be disregarded in the present analysis.
Next, terms of order £°! and £°53/2, respectively, are
considered in equation (44). This yields

N,
830 - ’3'"’ 900 "%km goo =0,
g

{53)
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and

4 _ &r
“‘31(01901 3 2806

1~ O (54)
g

Turning now to the secondary expansion, we
introduce stretched coordinates near the upper and

the lower wall, respectively:

L.

=GHDNE mearys - oo
Y = (—7)//0. neari=+}.
With the secondary expansion
0= 51;2900()/)"}‘83]0(}’)”**
{e,6 > 0; Yfixed), (56)

we obtain from equations (44) and (46) the sixth-
order differential equation

dZ
(o2

with the boundary conditions

800 =0, Fo=0 95 ~%%e=0, at¥=0. (58)

3
1) %00+ %00 = 0, 7

By a straightforward calculation, we now de-
termine solutions of the secondary differential equa-
tion (57) which, on one hand, satisfy the boundary
conditions (58), and, on the other hand, match
asymptotically with the solution of the primary
differential equation (53).

By use of Van Dyke’s asymptotic matching
principle (see e.g. [13], p. 206), the first-order result
is

8o = Cecos (M + D)nf, {59)
oo = C Y+Cy+Cye V£ Ce™ ™, (60)
ko, = =3[P +(2M + 1)z, 61)
where C is as a free constant, and
M=0,12..., {62a)
= N?b/6g, (62b)
\/3 Nz \/3_3 2
at.z=<—2“iz) iI(T +5) ,  {62)
C,=CR2M+Dret™ atj=+1, (62d)
z/oc%—-l)Cl
C2 =
o (1= o )[1—a1<1-a2 Yar(1=03)]
= —0.5373¢C,, 62e)
G, o
Cs 4= 5= (0.2686 1 0.4653))C,. (62f)
oy /g, — 1

Note that due to the exponential term in equation
(59) the wave amplitude is not symmetrical with
respect to the centerline of the layer (j = 0).

In order to keep the results for the second-order
solution free of unessential details we now restrict
the further analysis to the lowest mode (M = 0) of
B0 according to equation (59). This is justified if, for
instance, the perturbations that are prescribed at the
vertical wall x = 0 vary with j in the same way as
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does the lowest mode of 6y, More complicated
boundary conditions at the vertical wall would
require a superposition of higher-order modes.
Solving the second-order equation (54) with M =0
in 844, and applying again the asymptotic matching
condition to determine constants of integration, we
finally obtain

o1 = e[ B cos ny+2nC(C2/C1)¥ sin nf],
20,/C, = — 1611972,

Similar to C, also the constant B remains unde-
termined within the eigenvalue problem. Both con-
stants are available for satisfying boundary con-
ditions at the vertical wall (x = 0).

Summarizing the results for the complex wave
number, we obtain for the lowest mode of the weakly
damped thermoconvective wave the expression

_ 63
koy = 3n (©3)

k= koo +ekyo+0kyy +5% 2k, + (64)
with k_oo = 1
ko= it(/Pr +1/\/ Pr), (65)
koy = —3[(N?b/6g)* +n7],
Koy = —15.909.

It is seen from these results that at large Rayleigh-
numbers the effect of horizontal walls on the wave
number is of order = Ra~!/? only. This effect is due
to the development of an amplitude profile between
the walls. On the other hand, due to the no-slip
condition at the walls a boundary layer forms, giving
rise to a correction term of order §%2 in the wave
number. It must be emphasized that both correction
terms are real and negative, which means that the
real part of the wave number is reduced, and the
wave length as well as the phase velocity is increased.
Within this order of magiiitude, ie. terms 0(5*?)
included, the damping coefficient is unaffected by the
presence of the horizontal walls. An additional
damping due to the friction at the walls can only
appear in terms of higher order compared to 53/2.

Thus it has been shown that in a horizontal fluid
layer, bounded by rigid walls, weakly damped
thermoconvective waves are possible if the value of
the Rayleigh-number is close to the (large) value of
the critical Rayleigh-number. Furthermore, the re-
sults of the one-dimensional model can be taken as a
first approximation in the two-dimensional case as
far as the wave number is concerned. This is of
course not true for the amplitude which strongly
depends on the lateral coordinate in the two-
dimensional case.

It seems appropriate at this stage to note that the
Boussinesg-approximation, although often used in
natural convection problems, has not been applied in
our analysis so far. Applying the Boussinesq-
approximation would result in neglecting the first
and the second term in the continuity equation (8).
The first term leads to the term with the coefficient
&3N?b/g in equation (39), and it eventually becomes
a negligible hugher-order term in our expansion. The
second term appears in equation (39) as the term
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with the coefficient SN2b/g; this term is responsible
for the asymmetry of the amplitude, cf. equations
{59) and (62b), and it also gives rise to a modifi-
cation of the wave number, cf. equation (65).
Although these effects are qualitatively interesting,
they are not very important from a quantitative
point of view since

H. Keck and W. SCHNEIDER

second-order primary and the first-order secondary
solution for the upper half of the layer. As the
Rayleigh-number is limited by the critical value, the
value of 612 cannot be chosen smaller than 0.155.
Hence the depth of the boundary layer as well as the
discrepancy between the uniformly valid solution
and the secondary solution are relatively large. The
two-term primary solution shows very clearly the

N2hjg « 1, (66) displacement effect of the boundary layer.
Table 2.
Rayletigh-number Ra = 1700
Perturbation parameter & =0024
Boundary-layer thickness _
related to the depth of \/6 =0.155
the layer
Medium: Air at 300K
Height of the layer b [m] 1.17x 1072 845x 1072
Buoyancy frequency N [s7'] 5.22 0.1
. 2n
Period — at ¢ = 0.1 [s] 12 628
®
Parameter y, [Km™1]} 83 x 107 0.31
T, (0
‘Zﬁlc-?ﬂ [Km™1] 0.98 x 1072 0.98 x 102
m
Temperature difference
To(— 12} =T {(+ 1/2) [K] 9.7 0.026
N2b
7 [1] ~325x107? —~0.79x 107¢

under many conditions of practical interest. Two
examples are given in Table 2. The values in the first
example are based on data of experiments [7]. The
second example is intended to show that a rather
modest increase in the layer height has quite a large
effect on the important parameters, especially the
temperature difference between the walls and the
wave period.

In order to find a uniformly valid solution for the
amplitude, we add the primary and the secondary
solutions and subtract their common part (additive
composition, cf. eg [13, p. 208]). Adopting the
Boussinesqg-approximation, we obtain from equa-
tions (59), (60), and (63)
gy = (l+\/g)cosnf+\/52n(C2/C1)ysinnf

+JO[Cye T +C e =] (67)
The superscript (2,1) indicates that the solution is
accurate to second order in the primary layer (bulk
layer), and to first order in the secondary layers

{boundary layers).
In Fig. 3 this solution is shown together with the

5. THE INTERACTION BETWEEN
THERMOCONVECTIVE WAVES AND
SOUND WAVES

In general, the thermal and transverse oscillations
of thermoconvective waves are coupled with per-
turbations of the density, the pressure and the
longitudinal component {(x-components} of the vel-
ocity, cf. equations (8)—(11). Thus, with the compress-
ibility of the fluid fully taken into account, a sound
wave will propagate simultaneously with the thermo-
convective waves. According to the results of the
previous section it is justified to study the influence
of the sound wave again by means of a one-
dimensional model, although we have to be aware of
the modifications due to the horizontal boundaries
of the layer.

We introduce now the one-dimensional for-
mulation (20) into the system of equations (8)-(11),
supplemented by the general relations (4) and (5)
without any restrictions concerning the compress-
ibility of the fluid. Assuming plane harmonic waves
as indicated by equation (23), one can derive the
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following dispersion relation:

k®{1—ienA,} —E“{ia[. /Pr(l —ienA, %"—)

Po

1 n
+—=(1—ienA4 )}+———A B}
N/ Pr : / Pr '
—k*{1—ienA3B+e*(1 —ien) A4}

+e2n(B+£?) =0. (68)

The dimensionless wave number k and the parameter
¢ have already been defined by equations (26) and
(25), respectively. The new parameter # is given by

n = N./xv/c}, (69)
with ¢, as the isentropic speed of sound in the
undisturbed state, and N as the buoyancy frequency,
cf. equation (34). Furthermore the following abbrevi-
ations are introduced :

Ap = Cp.,/Cuox/E,
Ay = AoPri/v,
Az = AoPr(1+9/v),
Ay = Ao+/Pr(1+9/v),
As = Ao +\/E\7/ v,
B= —-N?/N?,
V= Q2u+)/po = Bu+w)/po.
The physical meaning of the parameter # becomes
immediately clear if we regard the phase velocities of
the two thermoconvective waves (I) and (IT) at small

values of the parameter ¢, cf. equations (26), (28), and
(29):

(70)

k,

Hence the parameter n is the square of the ratio
between the phase velocity of the strongly damped
thermoconvective wave (wave II) and the isentropic
speed of sound. Although the larger of the two phase
velocities (w/k,) and (w/k,)y is related to ¢y, 7 can be
treated as a small perturbation parameter. There is
an upper bound for N since the critical Rayleigh-
number must not be exceeded (see Section 4), and at
the typical value N =1s"! we obtain for air at
300K

REENC

(71)

n=17x10"10

Asymptotic solutions for the wave numbers of the
thermoconvective waves can be found by introduc-
ing the two-parameter expansion

k = koo +ekoy +nkyo+ O3, en, 1), (72)

into equation (68). The solutions for k,, and k,, are
identical to the values of k, and k, in equations (29)
and (30), that are the results obtained with the
compressibility neglected in the disturbances. For the
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first-order correction due to compressibility we
obtain
@O k—xo = AxB/4\/P"a

1)  kyo= —iA;B/4,/Pr.

If the propagation of thermoconvective waves is
considered the basic state is typically such that the
constants 4, and B, cf. equation (70), are positive.
Hence the real wave number of the weakly damped
thermoconvective wave (wave I) is increased and the
damping of the strongly damped thermoconvective
wave (wave II) is decreased. This leads to a reduced
attenuation per wave length in both cases.

Since the dimensionless wave number k was
defined by using the wave length of thermo-
convective waves as a reference length, the expansion
(72) cannot yield solutions for the sound wave. If we
want to keep the definition of k unchanged, we can
obtain the solution for the sound wave by changing
the expansion to

k = en'?[koo+ekoy +nkyo
+&%koy +enkyy +n7kyo + .. ]

(73)

(74)

The classical relation for the isentropic sound wave,
k = w/c,, would correspond to k = en'/2. Introduc-
ing equation (74) into the dispersion relation (68)
gives

k—00=\/B’ E01 =E10=0,

koz = (1—B)2\/B, ki, =i(4;/2)B¥

Surprisingly already the lowest order of the expan-
sion of the wave number deviates from the classical
result. Though B is approximately equal to one at
conditions that are typical of thermoconvective
waves, it could adopt any other value in a general
case; even B =0 or B <0 would be possible. An
explanation for this phenomenon is found by
realizing that in a stratified fluid sound waves may
be coupled with internal gravity waves. This problem
has been treated in [14] for the case of horizontally
propagating plane waves, and the above results have
been verified. Further details can also be found in
[12]. We just note here that by extending the one-
dimensional treatment from the incompressible to
the compressible case, we are retaining possible
solutions for internal gravity waves.

Now turning our attention to the wave ampli-
tudes, we sum up the contributions of the three
simultaneously propagating waves,

(75)

e

T = Z ejei(ij—wt)’
i=1

1
"= itk x— oot
V=) Vet
i=1

(76)
m
u/ — Z Ujei(klx—wti,
=1
to satisfy the boundary conditions at the vertical

wall
m I m

Y 0i=060, Y Vi=Vy Y Uj=Up (77
=1 i=1 i=1
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Subscripts j=1 and j = II refer to the two thermo-
convective waves, j = I1I to the sound wave. Bound-
ary values at the wall are denoted by the subscript
0.

As our aim is to compare the magnitudes of the
amplitudes, we shall leave possible phase angles
between 8,, V, and U, out of consideration. By
eliminating the amplitudes V; and U; with the use of
the governing one-dimensional equations, we obtain
from the equations (77) a system of three linear
algebraic equations for the three unknown ampli-
tudes #, To compute the coefficients of these
equations we use the asymptotic solutions for the
wave numbers according to equations (72) and (74).
Furthermore we define the following dimensioniess
amplitudes:

_ ~ N
0,=0,0; V;=V,~ /Pr;
y g (78)
U,= ;;f Ao</Pr//B, j=0LILIL

By considering only the leading terms of the
expansions and solving the system of linear algebraic
equations, we finally obtain the temperature ampli-
tudes f; in terms of the boundary values 8, Vo, Us:
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Howaever, one has to pay attention to the fact that
the attenuation of the sound wave is much smaller
than the attenuation of even the weakly damped
thermoconvective wave. While the damping of the
thermoconvective wave 1 is of the order Q(e), the
damping of the sound wave is only of the order
O(*n>™), cf. equations (74) and (75).

6. SUMMARY

Thermoconvective waves are strongly coupled
thermal and shearing waves in a stratified fluid, with
the coupling being due to buoyancy forces. In
contrast to ordinary thermal waves and ordinary
shearing waves, thermoconvective waves can be
weakly damped.

Avoiding any assumption about the compress-
ibility of the fluid in the undisturbed basic state it
has been shown in Section 3 that the conditions for
the propagation of one-dimensional thermo-
convective waves contradict the stability criterion for
a vertically unbounded fluid. This contradiction was
overlooked by previous authors [ 1, 3] due to various
assumptions and approximations concerning the
basic state of the fluid.

"B, 1/2 1/2 121 (8,
Oy »= 1/2 ~1/2 1/2 1A (79)
Gu) 1240 /B(—i'? =124, /B(+i'? —1) U,

Using again the governing equations that were used to eliminate the velocity components, one can derive
from equation (79) the following solutions for the amplitudes ¥; and U :

" 12 12 12 Jéo }
.? IR 1/,2_ 1+;1/2ﬁ. i/z ; lf’ j (80)
ey -5 VB vz = JBen'? i | Us
Uy - %AO\//B?'?UZ _%f‘io\//};ﬂ”2 —%Ao\/gq“z Bo
Un [ = 340 \/E””Z —34, \/7‘6'7”2 $4, \/5’7”2 Vo
Un - ]——2——1— A \/En”z l_z_i Ay /Byt | s

For details of the calculations the reader is referred to [12].

As far as orders of magnitude are concerned, the
results obtained for the amplitudes can be sum-
marized as follows. If the waves are induced by a
horizontal motion of the {vertical) wall, the dimen-
sionless temperature amplitudes of the sound wave
and of the thermoconvective waves are all of the
same order as the dimensionless amplitude of the
wall motion (i.e. U,). In this case the contributions
of the sound wave are essential and cannot be
neglected. If, on the other hand, the waves are due to
temperature oscillations at the wall and/or a vertical
motion of the wall, the temperature and velocity
amplitudes of the sound wave are small of the order
O(n''?) and O(en''?), respectively, in comparison to
the wall values, and can therefore be neglected under
most circumstances.

In order to prevent instability of the basic state the
fluid can be confined between two horizontal walls,
This leads to the problem of two-dimensional wave
propagation treated in Section 4.

To find asymptotic solutions of the eigenvalue
problem a two-parameter expansion is carried
through. The first perturbation parameter, denoted
by &, is the ratio of the wave frequency w and the
buoyancy frequency N; only if £ is very small are
weakly damped thermoconvective waves possible at
all. The second perturbation parameter, o, is the
square of the ratio of wave length and height of the
layer. The parameter & is related to the Rayleigh-
number by & = Ra™'/%; it can be regarded as small
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compared to 1 at values of Ra close to the critical
Rayleigh-number of ~ 1700.

Whereas the expansion in terms of ¢ is regular, the
expansion in terms of & leads to a singular
perturbation problem that has been solved by the
method of matched asymptotic expansions. The first
correction to the results of the one-dimensional
model consists of an increase of the wavelength of
the order O(8) and is due to the formation of an
amplitude profile between the horizontal walls. The
influence of the boundary layer solution on the wave
number is of the order O(5*?). It is very interesting
that this modification, too, does not yield an
additional damping of the waves but further in-
creases the wave length. This can be interpreted as a
displacement effect of the boundary layer. As the
damping due to the friction at the horizontal walls is
shown to be small of higher order, it follows that the
horizontal walls do not prevent the existence of
weakly damped thermoconvective waves provided
that the Rayleigh-number is large.

Taking into account the compressibility of the
fluid not only as far as the basic state is concerned
but also with respect to the disturbances, the
interaction between thermoconvective waves and
sound waves has been investigated in Section 3.
Regarding the thermoconvective waves it has been
shown that the compressibility effects slightly reduce
the attenuation per wave length; the reduction is of
the order of the very small parameter 5, where 7 is
the square of the ratio of a thermoconvective phase
velocity and the speed of sound. On the other hand,
the simultaneously propagating sound wave is
considerably modified. This modification is con-
nected with the propagation of internal gravity
waves in stratified fluids.

Finally, the two thermoconvective wave modes
and the sound wave have been superposed to satisfy
the boundary conditions at the vertical wall, and the
amplitudes of the three partial waves have been
determined. The results indicate that the contri-
bution of the sound wave can be neglected if we are
primarily interested in the propagation of thermal
and transversal (shearing) oscillations, but that it
must be taken into account when at the vertical wall
also longitudinal oscillations are prescribed.

1511

Acknowledgements—This work was supported by the Fonds
zur Forderung der wissenschaftlichen Forschung in
Osterreich; it formed part of the Ph.D. thesis of H.K. [12].
The authors thank Mr. A. A. Towfik for computational
work and the drawing of the figures.

REFERENCES

1. A. V. Luikov and B. M. Berkovsky, Thermoconvective
waves, Int. J. Heat Mass Transfer 13, 741 (1970). cf. also
Dokl. Akad. Nauk BSSR 13, 316 (1969).

2. L. D. Landau and E. M. Lifschitz, Lehrbuch der
Theoretischen  Physik. Bd. VI: Hydrodynamik.
Akademie, Berlin (1971).

3. B. M. Berkovsky et al., Free convection. In Progress in
Heat and Mass Transfer, Vol. 4, edited by O. G.
Martynenko et al, pp. 191-233. Pergamon Press,
Oxford (1971).

4. A. V. Luikov and B. M. Berkovsky, Thermoconvective
waves in viscoelastic liquids, Inzh.-Fiz. Zh. 16, No. 5
(1969).

5. B. M. Berkovsky and A. K. Sinitsyn, Thermoconvective
waves in a layer with free boundaries, Inzh.-Fiz. Zh. 25,
No. 1 (1974).

6. B. M. Berkovsky and A. K. Sinitsyn, Thermoconvective
waves in a horizontal cavity, Fluid Dynamics 10, 174
(1975). Transl. from [zv. Akad. Nauk SSSR, Mekhanika
Zhidkosti i Gaza, No. 1, 180 (1975).

7. Yu. 1. Barkov, B. M. Berkovsky and V. E. Fertman,
Experimental study of thermoconvective waves, Fluid
Dynamics 10, 187 (1975). Transl. from Izv. Akad. Nauk
SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 187-189
(1975).

8. K. Oswatitsch, Physikalische Grundlagen der Strémungs-
mechanik, Handbuch der Physik, Hrsg. S. Fliigge; Band
VIII/1. Springer, Berlin (1959).

9. S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability. Oxford University Press, Oxford (1961).

10. J. S. Turner, Buoyancy Effects in Fluids, Cambridge
University Press, Cambridge (1973).

11. E. E. Gossard and W. H. Hooke, Waves in the
Atmosphere, Elsevier, Amsterdam (1975).

12. H. Keck, Thermokonvektive Wellen unter Beriicksich-
tigung von Kompressibilitdt, Wandeinfliissen und Wiir-
mestrahlung, Dissertation Techn. Univ., Wien (1977).

13. W. Schneider, Mathematische Methoden der Stromungs-
meckanik. Vieweg, Braunschweig (1978).

14. H. Keck, Uber die eindimensionale Ausbreitung kleiner
Stérungen in einem kompressiblen, geschichteten
Medium im Schwerefeld, Z. Flugwiss. Weltraumforsch.
1,42 (1977).

15. E. Becker, Gasdynamik, p. 25. Teubner, Stuttgart (1966).

16. B. M. Berkovsky, V. E. Fertman, A. K. Sinitsyn and
Yu. I. Barkov, A theoretical and experimental study of
thermal disturbances propagating in a fluid layer
heated from below, J. Fluid Mech. To be published.

ONDES THERMOCONVECTIVES DANS UN FLUIDE COMPRESSIBLE

Resume—Les conditions de la propagation des ondes thermoconvectives monodimensionnelles sont en
contradiction avec le critére de stabilité pour un fluide verticalement illimité. Ceci conduit au probléme de
la propagation d’une onde bidimensionnelle dans une couche de fluide stratifiée, confinée entre les parois
horizontales. Le probléme de valeurs propres est résolu par un développement a deux paramétres qui est
singulier par rapport 4 l'un des paramétres. Les résultats montrent que les parois horizontales ne
suppriment pas l'existence d’ondes thermoconvectives faiblement amorties lorsque le nombre de Rayleigh
est grand. Finalement, I'intéraction des ondes thermoconvectives et des ondes sonores est étudiée et les
amplitudes des differents modes sont déterminées.
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THERMOKONVEKTIVE WELLEN IN EINEM KOMPRESSIBLEN FLUID

Zusammenfassung —Es wird gezeigt, daB die Bedingungen fiir dic Ausbreitung von eindimensionalen
thermokonvektiven Wetlen dem Stabilitatskriterium fir ein vertikal unbegrenztes Fluid widersprechen.
Das fiihrt zum Problem der zweidimensionalen Wellenausbreitung in einem geschichteten Fluid, das
zwischen horizontalen Wiinden eingeschlossen ist. Das Eigenwert-Problem wird mittels einer Zwei-
Parameter-Entwicklung geldst, die beziiglich eines der beiden Parameter singulir ist. Die Ergebnisse
zeigen, daB die horizontalen Winde die Existenz schwach geddmpfter thermokonvektiver Wellen nicht
verhindern, vorausgesetzt daBl die Rayleigh-Zah!l sehr grof} ist. SchlieBlich wird die Wechselwirkung
zwischen thermokonvektiven Wellen und Schallwellen untersucht, und die Amplituden der einzelnen
Wellen werden bestimmt.

TEPMOKOHBEKTHUBHBLIE BOJIHBI B CKUMAEMOW XHIKOCTU

Annorannn — [10Ka3aHO, YTO YC/OBHS PACHPOCTPAHEHHS OQHOMEPHBIX TEPMOKOHBEKTHBHBIX BOJH
NPOTHBOPEYAT KPHTEPHIO YCTOHYMBOCTH BEPTHKANBHO HEOTPAHHYCHHOA XHMAKOCTH. DTO TPHBOAMT
K npobjieMe ABYXMEPHOTO PACIPOCTPAHEHHS BOJIH B CTPATHMHUKPOBAHHOM CJI0€ XHAKOCTH, 3aKAI0-
YEHHOM MEX/1y FOPH3OHTA/ILHBIMU CTCHKaMH. 3a1a4a Ha CODCTBEHHbIE 3HAHEHHS PELIAETCS C NOMOLbIO
ABYXNIAPAMETPHYECKOr0 PA3AO0KEHHSA, ABIAIOLIETOCH CHHTYIAPHBIM 110 OTHOLWEHHIO K OAHOMY W3
napaMeTpoB. Pe3yanTaThl MOKa3bIBAKOT, HTO NPH HAJHMHUH FOPHIOHTAJILHBIX CTEHOK TaKXe HMEIOT
MecTo cnabo 3aTyXaloUlHe TEPMOKOHBEKTHBHbBIE BOJIHBI, HO TONLKO B cryyae GObIIOTO 3HAYEHMA
yucna Penes. Hakomew, paccMaTpHBaeTCcs B3aMMOAEHCTBHE TEPMOKOHBEKTMBHBIX M 3BYKOBBIX BOJH
H ONPEHEAAIOTCH aMITIUTYIbI Pa3/IMYHbIX BOTHOBBIX MO/L.



